

J & S Instruments, Inc.

3071 S. Limestone St. Springfield, Ohio 45505-5023 Phone: (937) 325-7499 Fax: (937) 323-9588 Home Page: www.jsinstruments.com

Subsurface Oxygen Sensor Specifications

Part #:	JS-XT253-XX, (were $XX = $ length in feet)	
Sensor Type:	Electrochemical cell	
Sensor Life:	\approx 7 years	
Temperature Compensation:	Internal Thermistor	
Pressure Compensation:	None (see pressure compensation notes)	
Accuracy (full scale):	$\approx 1\%$ for oxygen depleting (calibration at 20.9%)	
Storage Temperature:	0 - 70° C	
Storage and Operating Orientation:	Vertical	
Operating Temperature:	0 - 70° C	
Output Signal:	mV or 4-20mA	
Maintenance Required:	None	
Calibration Requirements:	Calibrate in air before installation (see long term stability fig. 1)	
Installation Methods:	2" or larger monitoring well or directly buried in soil	
Response Time:	12 Sec. (5 min. for temperature compensation)	

Influence of Various Gases

Influence LevelGas TypeUnaffected CO_2 , CO, H_2S , SO_2 , H_2 , CL_2 , CFC's, CH_4 ,
 N_2 , etc...AffectedNh3 (ammonia), Ozone

Pressure Influence

The oxygen sensor is responsive to partial pressure of oxygen molecules which enter the sensor through a Teflon membrane. The effects from a change (from calibration point) in atmospheric pressure can be corrected by recalibration of sensor. It is recommended to calibrate the sensor on site to compensate for pressure-altitude equivalents (e.g. -531 ft. = 1033mB, sea level = 1013mB, 5974 ft. = 813mB). The following equation represents the effect of pressure influence on the sensor.

Vo = Vos x (P/1013)	we	re P = pressure (mB) Vos = voltage at 1013 mB Vo = voltage output (mV)
Vos = 44.3mv @ 1013 = 20.9% O ₂ , Cf = .5,	$\approx \% O_2$	= Cf X (Vo - 2.5)
29.3 in. Hg. (sea level - storm conditions)29.9 in. Hg. (sea level - calm conditions)30.5 in. Hg. (sea level - storm conditions)	20.5% O ₂ 20.9% O ₂ 21.3% O ₂ were	= $.5 \times ((44.3 \times {}^{992}/_{1013}) - \text{Ov})$ = $.5 \times ((44.3 \times {}^{1013}/_{1013}) - \text{Ov})$ = $.5 \times ((44.3 \times {}^{1033}/_{1013}) - \text{Ov})$ Ov = offset voltage @ 0% O ₂ = $\approx 2.5\text{mV}$ Cf = calibration factor = 20.9/(Vo @ 20.9 O ₂ % - Ov)

As shown above, considerable changes in barometric pressure is not great enough to produce serious degradation in sensor performance for long term remediation monitoring applications. Studies indicate that for in-situ O₂ monitoring possible diurnal change caused by various impending factors affect subsurface O₂ concentration levels (see oxygen sensor applications literature).

Subsurface Oxygen Sensor Specifications Cont.

Long Term Stability (fig. 1)

